Description: A topological space is T_0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | t0kq.1 | |
|
Assertion | t0kq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t0kq.1 | |
|
2 | simpl | |
|
3 | 1 | ist0-4 | |
4 | 3 | biimpa | |
5 | 2 4 | qtopf1 | |
6 | 1 | kqval | |
7 | 6 | adantr | |
8 | 7 | oveq2d | |
9 | 5 8 | eleqtrrd | |
10 | hmphi | |
|
11 | hmphsym | |
|
12 | 10 11 | syl | |
13 | 1 | kqt0lem | |
14 | t0hmph | |
|
15 | 12 13 14 | syl2im | |
16 | 15 | impcom | |
17 | 9 16 | impbida | |