Metamath Proof Explorer


Theorem t0kq

Description: A topological space is T_0 iff the quotient map is a homeomorphism onto the space's Kolmogorov quotient. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypothesis t0kq.1 F=xXyJ|xy
Assertion t0kq JTopOnXJKol2FJHomeoKQJ

Proof

Step Hyp Ref Expression
1 t0kq.1 F=xXyJ|xy
2 simpl JTopOnXJKol2JTopOnX
3 1 ist0-4 JTopOnXJKol2F:X1-1V
4 3 biimpa JTopOnXJKol2F:X1-1V
5 2 4 qtopf1 JTopOnXJKol2FJHomeoJqTopF
6 1 kqval JTopOnXKQJ=JqTopF
7 6 adantr JTopOnXJKol2KQJ=JqTopF
8 7 oveq2d JTopOnXJKol2JHomeoKQJ=JHomeoJqTopF
9 5 8 eleqtrrd JTopOnXJKol2FJHomeoKQJ
10 hmphi FJHomeoKQJJKQJ
11 hmphsym JKQJKQJJ
12 10 11 syl FJHomeoKQJKQJJ
13 1 kqt0lem JTopOnXKQJKol2
14 t0hmph KQJJKQJKol2JKol2
15 12 13 14 syl2im FJHomeoKQJJTopOnXJKol2
16 15 impcom JTopOnXFJHomeoKQJJKol2
17 9 16 impbida JTopOnXJKol2FJHomeoKQJ