Metamath Proof Explorer


Theorem qtopf1

Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Hypotheses qtopf1.1 φ J TopOn X
qtopf1.2 φ F : X 1-1 Y
Assertion qtopf1 φ F J Homeo J qTop F

Proof

Step Hyp Ref Expression
1 qtopf1.1 φ J TopOn X
2 qtopf1.2 φ F : X 1-1 Y
3 f1fn F : X 1-1 Y F Fn X
4 2 3 syl φ F Fn X
5 qtopid J TopOn X F Fn X F J Cn J qTop F
6 1 4 5 syl2anc φ F J Cn J qTop F
7 f1f1orn F : X 1-1 Y F : X 1-1 onto ran F
8 f1ocnv F : X 1-1 onto ran F F -1 : ran F 1-1 onto X
9 f1of F -1 : ran F 1-1 onto X F -1 : ran F X
10 2 7 8 9 4syl φ F -1 : ran F X
11 imacnvcnv F -1 -1 x = F x
12 imassrn F x ran F
13 12 a1i φ x J F x ran F
14 2 adantr φ x J F : X 1-1 Y
15 toponss J TopOn X x J x X
16 1 15 sylan φ x J x X
17 f1imacnv F : X 1-1 Y x X F -1 F x = x
18 14 16 17 syl2anc φ x J F -1 F x = x
19 simpr φ x J x J
20 18 19 eqeltrd φ x J F -1 F x J
21 dffn4 F Fn X F : X onto ran F
22 4 21 sylib φ F : X onto ran F
23 elqtop3 J TopOn X F : X onto ran F F x J qTop F F x ran F F -1 F x J
24 1 22 23 syl2anc φ F x J qTop F F x ran F F -1 F x J
25 24 adantr φ x J F x J qTop F F x ran F F -1 F x J
26 13 20 25 mpbir2and φ x J F x J qTop F
27 11 26 eqeltrid φ x J F -1 -1 x J qTop F
28 27 ralrimiva φ x J F -1 -1 x J qTop F
29 qtoptopon J TopOn X F : X onto ran F J qTop F TopOn ran F
30 1 22 29 syl2anc φ J qTop F TopOn ran F
31 iscn J qTop F TopOn ran F J TopOn X F -1 J qTop F Cn J F -1 : ran F X x J F -1 -1 x J qTop F
32 30 1 31 syl2anc φ F -1 J qTop F Cn J F -1 : ran F X x J F -1 -1 x J qTop F
33 10 28 32 mpbir2and φ F -1 J qTop F Cn J
34 ishmeo F J Homeo J qTop F F J Cn J qTop F F -1 J qTop F Cn J
35 6 33 34 sylanbrc φ F J Homeo J qTop F