Metamath Proof Explorer


Theorem kur14lem2

Description: Lemma for kur14 . Write interior in terms of closure and complement: i A = c k c A where c is complement and k is closure. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j J Top
kur14lem.x X = J
kur14lem.k K = cls J
kur14lem.i I = int J
kur14lem.a A X
Assertion kur14lem2 I A = X K X A

Proof

Step Hyp Ref Expression
1 kur14lem.j J Top
2 kur14lem.x X = J
3 kur14lem.k K = cls J
4 kur14lem.i I = int J
5 kur14lem.a A X
6 2 ntrval2 J Top A X int J A = X cls J X A
7 1 5 6 mp2an int J A = X cls J X A
8 4 fveq1i I A = int J A
9 3 fveq1i K X A = cls J X A
10 9 difeq2i X K X A = X cls J X A
11 7 8 10 3eqtr4i I A = X K X A