Metamath Proof Explorer


Theorem kur14lem2

Description: Lemma for kur14 . Write interior in terms of closure and complement: i A = c k c A where c is complement and k is closure. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses kur14lem.j JTop
kur14lem.x X=J
kur14lem.k K=clsJ
kur14lem.i I=intJ
kur14lem.a AX
Assertion kur14lem2 IA=XKXA

Proof

Step Hyp Ref Expression
1 kur14lem.j JTop
2 kur14lem.x X=J
3 kur14lem.k K=clsJ
4 kur14lem.i I=intJ
5 kur14lem.a AX
6 2 ntrval2 JTopAXintJA=XclsJXA
7 1 5 6 mp2an intJA=XclsJXA
8 4 fveq1i IA=intJA
9 3 fveq1i KXA=clsJXA
10 9 difeq2i XKXA=XclsJXA
11 7 8 10 3eqtr4i IA=XKXA