Metamath Proof Explorer


Theorem lanval

Description: Value of the set of left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses lanval.r R = D FuncCat E
lanval.s S = C FuncCat E
lanval.f φ F C Func D
lanval.x φ X C Func E
lanval.k No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = K ) with typecode |-
Assertion lanval Could not format assertion : No typesetting found for |- ( ph -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 lanval.r R = D FuncCat E
2 lanval.s S = C FuncCat E
3 lanval.f φ F C Func D
4 lanval.x φ X C Func E
5 lanval.k Could not format ( ph -> ( <. D , E >. -o.F F ) = K ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F F ) = K ) with typecode |-
6 3 func1st2nd φ 1 st F C Func D 2 nd F
7 6 funcrcl2 φ C Cat
8 6 funcrcl3 φ D Cat
9 4 func1st2nd φ 1 st X C Func E 2 nd X
10 9 funcrcl3 φ E Cat
11 1 2 7 8 10 lanfval Could not format ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) : No typesetting found for |- ( ph -> ( <. C , D >. Lan E ) = ( f e. ( C Func D ) , x e. ( C Func E ) |-> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) ) ) with typecode |-
12 simprl φ f = F x = X f = F
13 12 oveq2d Could not format ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = ( <. D , E >. -o.F F ) ) : No typesetting found for |- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = ( <. D , E >. -o.F F ) ) with typecode |-
14 5 adantr Could not format ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F F ) = K ) : No typesetting found for |- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F F ) = K ) with typecode |-
15 13 14 eqtrd Could not format ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = K ) : No typesetting found for |- ( ( ph /\ ( f = F /\ x = X ) ) -> ( <. D , E >. -o.F f ) = K ) with typecode |-
16 simprr φ f = F x = X x = X
17 15 16 oveq12d Could not format ( ( ph /\ ( f = F /\ x = X ) ) -> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) = ( K ( R UP S ) X ) ) : No typesetting found for |- ( ( ph /\ ( f = F /\ x = X ) ) -> ( ( <. D , E >. -o.F f ) ( R UP S ) x ) = ( K ( R UP S ) X ) ) with typecode |-
18 ovexd Could not format ( ph -> ( K ( R UP S ) X ) e. _V ) : No typesetting found for |- ( ph -> ( K ( R UP S ) X ) e. _V ) with typecode |-
19 11 17 3 4 18 ovmpod Could not format ( ph -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) : No typesetting found for |- ( ph -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) with typecode |-