Metamath Proof Explorer


Theorem lanval2

Description: The set of left Kan extensions is the set of universal pairs. Therefore, the explicit universal property can be recovered by isup2 and upciclem1 . (Contributed by Zhi Wang, 3-Nov-2025)

Ref Expression
Hypotheses islan.r R = D FuncCat E
islan.s S = C FuncCat E
islan.k No typesetting found for |- K = ( <. D , E >. -o.F F ) with typecode |-
Assertion lanval2 Could not format assertion : No typesetting found for |- ( F e. ( C Func D ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 islan.r R = D FuncCat E
2 islan.s S = C FuncCat E
3 islan.k Could not format K = ( <. D , E >. -o.F F ) : No typesetting found for |- K = ( <. D , E >. -o.F F ) with typecode |-
4 1 2 3 islan Could not format ( x e. ( F ( <. C , D >. Lan E ) X ) -> x e. ( K ( R UP S ) X ) ) : No typesetting found for |- ( x e. ( F ( <. C , D >. Lan E ) X ) -> x e. ( K ( R UP S ) X ) ) with typecode |-
5 4 adantl Could not format ( ( F e. ( C Func D ) /\ x e. ( F ( <. C , D >. Lan E ) X ) ) -> x e. ( K ( R UP S ) X ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( F ( <. C , D >. Lan E ) X ) ) -> x e. ( K ( R UP S ) X ) ) with typecode |-
6 simpr Could not format ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( K ( R UP S ) X ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( K ( R UP S ) X ) ) with typecode |-
7 simpl Could not format ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> F e. ( C Func D ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> F e. ( C Func D ) ) with typecode |-
8 2 fucbas C Func E = Base S
9 8 uprcl Could not format ( x e. ( K ( R UP S ) X ) -> ( K e. ( R Func S ) /\ X e. ( C Func E ) ) ) : No typesetting found for |- ( x e. ( K ( R UP S ) X ) -> ( K e. ( R Func S ) /\ X e. ( C Func E ) ) ) with typecode |-
10 9 simprd Could not format ( x e. ( K ( R UP S ) X ) -> X e. ( C Func E ) ) : No typesetting found for |- ( x e. ( K ( R UP S ) X ) -> X e. ( C Func E ) ) with typecode |-
11 10 adantl Could not format ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> X e. ( C Func E ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> X e. ( C Func E ) ) with typecode |-
12 3 eqcomi Could not format ( <. D , E >. -o.F F ) = K : No typesetting found for |- ( <. D , E >. -o.F F ) = K with typecode |-
13 12 a1i Could not format ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( <. D , E >. -o.F F ) = K ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( <. D , E >. -o.F F ) = K ) with typecode |-
14 1 2 7 11 13 lanval Could not format ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) with typecode |-
15 6 14 eleqtrrd Could not format ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( F ( <. C , D >. Lan E ) X ) ) : No typesetting found for |- ( ( F e. ( C Func D ) /\ x e. ( K ( R UP S ) X ) ) -> x e. ( F ( <. C , D >. Lan E ) X ) ) with typecode |-
16 5 15 impbida Could not format ( F e. ( C Func D ) -> ( x e. ( F ( <. C , D >. Lan E ) X ) <-> x e. ( K ( R UP S ) X ) ) ) : No typesetting found for |- ( F e. ( C Func D ) -> ( x e. ( F ( <. C , D >. Lan E ) X ) <-> x e. ( K ( R UP S ) X ) ) ) with typecode |-
17 16 eqrdv Could not format ( F e. ( C Func D ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) : No typesetting found for |- ( F e. ( C Func D ) -> ( F ( <. C , D >. Lan E ) X ) = ( K ( R UP S ) X ) ) with typecode |-