Metamath Proof Explorer


Theorem latjass

Description: Lattice join is associative. Lemma 2.2 in MegPav2002 p. 362. ( chjass analog.) (Contributed by NM, 17-Sep-2011)

Ref Expression
Hypotheses latjass.b B=BaseK
latjass.j ˙=joinK
Assertion latjass KLatXBYBZBX˙Y˙Z=X˙Y˙Z

Proof

Step Hyp Ref Expression
1 latjass.b B=BaseK
2 latjass.j ˙=joinK
3 eqid K=K
4 simpl KLatXBYBZBKLat
5 1 2 latjcl KLatXBYBX˙YB
6 5 3adant3r3 KLatXBYBZBX˙YB
7 simpr3 KLatXBYBZBZB
8 1 2 latjcl KLatX˙YBZBX˙Y˙ZB
9 4 6 7 8 syl3anc KLatXBYBZBX˙Y˙ZB
10 simpr1 KLatXBYBZBXB
11 1 2 latjcl KLatYBZBY˙ZB
12 11 3adant3r1 KLatXBYBZBY˙ZB
13 1 2 latjcl KLatXBY˙ZBX˙Y˙ZB
14 4 10 12 13 syl3anc KLatXBYBZBX˙Y˙ZB
15 1 3 2 latlej1 KLatXBY˙ZBXKX˙Y˙Z
16 4 10 12 15 syl3anc KLatXBYBZBXKX˙Y˙Z
17 simpr2 KLatXBYBZBYB
18 1 3 2 latlej1 KLatYBZBYKY˙Z
19 18 3adant3r1 KLatXBYBZBYKY˙Z
20 1 3 2 latlej2 KLatXBY˙ZBY˙ZKX˙Y˙Z
21 4 10 12 20 syl3anc KLatXBYBZBY˙ZKX˙Y˙Z
22 1 3 4 17 12 14 19 21 lattrd KLatXBYBZBYKX˙Y˙Z
23 1 3 2 latjle12 KLatXBYBX˙Y˙ZBXKX˙Y˙ZYKX˙Y˙ZX˙YKX˙Y˙Z
24 4 10 17 14 23 syl13anc KLatXBYBZBXKX˙Y˙ZYKX˙Y˙ZX˙YKX˙Y˙Z
25 16 22 24 mpbi2and KLatXBYBZBX˙YKX˙Y˙Z
26 1 3 2 latlej2 KLatYBZBZKY˙Z
27 26 3adant3r1 KLatXBYBZBZKY˙Z
28 1 3 4 7 12 14 27 21 lattrd KLatXBYBZBZKX˙Y˙Z
29 1 3 2 latjle12 KLatX˙YBZBX˙Y˙ZBX˙YKX˙Y˙ZZKX˙Y˙ZX˙Y˙ZKX˙Y˙Z
30 4 6 7 14 29 syl13anc KLatXBYBZBX˙YKX˙Y˙ZZKX˙Y˙ZX˙Y˙ZKX˙Y˙Z
31 25 28 30 mpbi2and KLatXBYBZBX˙Y˙ZKX˙Y˙Z
32 1 3 2 latlej1 KLatXBYBXKX˙Y
33 32 3adant3r3 KLatXBYBZBXKX˙Y
34 1 3 2 latlej1 KLatX˙YBZBX˙YKX˙Y˙Z
35 4 6 7 34 syl3anc KLatXBYBZBX˙YKX˙Y˙Z
36 1 3 4 10 6 9 33 35 lattrd KLatXBYBZBXKX˙Y˙Z
37 1 3 2 latlej2 KLatXBYBYKX˙Y
38 37 3adant3r3 KLatXBYBZBYKX˙Y
39 1 3 4 17 6 9 38 35 lattrd KLatXBYBZBYKX˙Y˙Z
40 1 3 2 latlej2 KLatX˙YBZBZKX˙Y˙Z
41 4 6 7 40 syl3anc KLatXBYBZBZKX˙Y˙Z
42 1 3 2 latjle12 KLatYBZBX˙Y˙ZBYKX˙Y˙ZZKX˙Y˙ZY˙ZKX˙Y˙Z
43 4 17 7 9 42 syl13anc KLatXBYBZBYKX˙Y˙ZZKX˙Y˙ZY˙ZKX˙Y˙Z
44 39 41 43 mpbi2and KLatXBYBZBY˙ZKX˙Y˙Z
45 1 3 2 latjle12 KLatXBY˙ZBX˙Y˙ZBXKX˙Y˙ZY˙ZKX˙Y˙ZX˙Y˙ZKX˙Y˙Z
46 4 10 12 9 45 syl13anc KLatXBYBZBXKX˙Y˙ZY˙ZKX˙Y˙ZX˙Y˙ZKX˙Y˙Z
47 36 44 46 mpbi2and KLatXBYBZBX˙Y˙ZKX˙Y˙Z
48 1 3 4 9 14 31 47 latasymd KLatXBYBZBX˙Y˙Z=X˙Y˙Z