Description: Lattice join is associative. Lemma 2.2 in MegPav2002 p. 362. ( chjass analog.) (Contributed by NM, 17-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | latjass.b | |
|
latjass.j | |
||
Assertion | latjass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjass.b | |
|
2 | latjass.j | |
|
3 | eqid | |
|
4 | simpl | |
|
5 | 1 2 | latjcl | |
6 | 5 | 3adant3r3 | |
7 | simpr3 | |
|
8 | 1 2 | latjcl | |
9 | 4 6 7 8 | syl3anc | |
10 | simpr1 | |
|
11 | 1 2 | latjcl | |
12 | 11 | 3adant3r1 | |
13 | 1 2 | latjcl | |
14 | 4 10 12 13 | syl3anc | |
15 | 1 3 2 | latlej1 | |
16 | 4 10 12 15 | syl3anc | |
17 | simpr2 | |
|
18 | 1 3 2 | latlej1 | |
19 | 18 | 3adant3r1 | |
20 | 1 3 2 | latlej2 | |
21 | 4 10 12 20 | syl3anc | |
22 | 1 3 4 17 12 14 19 21 | lattrd | |
23 | 1 3 2 | latjle12 | |
24 | 4 10 17 14 23 | syl13anc | |
25 | 16 22 24 | mpbi2and | |
26 | 1 3 2 | latlej2 | |
27 | 26 | 3adant3r1 | |
28 | 1 3 4 7 12 14 27 21 | lattrd | |
29 | 1 3 2 | latjle12 | |
30 | 4 6 7 14 29 | syl13anc | |
31 | 25 28 30 | mpbi2and | |
32 | 1 3 2 | latlej1 | |
33 | 32 | 3adant3r3 | |
34 | 1 3 2 | latlej1 | |
35 | 4 6 7 34 | syl3anc | |
36 | 1 3 4 10 6 9 33 35 | lattrd | |
37 | 1 3 2 | latlej2 | |
38 | 37 | 3adant3r3 | |
39 | 1 3 4 17 6 9 38 35 | lattrd | |
40 | 1 3 2 | latlej2 | |
41 | 4 6 7 40 | syl3anc | |
42 | 1 3 2 | latjle12 | |
43 | 4 17 7 9 42 | syl13anc | |
44 | 39 41 43 | mpbi2and | |
45 | 1 3 2 | latjle12 | |
46 | 4 10 12 9 45 | syl13anc | |
47 | 36 44 46 | mpbi2and | |
48 | 1 3 4 9 14 31 47 | latasymd | |