Metamath Proof Explorer


Theorem latjcl

Description: Closure of join operation in a lattice. ( chjcom analog.) (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latjcl.b B = Base K
latjcl.j ˙ = join K
Assertion latjcl K Lat X B Y B X ˙ Y B

Proof

Step Hyp Ref Expression
1 latjcl.b B = Base K
2 latjcl.j ˙ = join K
3 eqid meet K = meet K
4 1 2 3 latlem K Lat X B Y B X ˙ Y B X meet K Y B
5 4 simpld K Lat X B Y B X ˙ Y B