Metamath Proof Explorer


Theorem latjcl

Description: Closure of join operation in a lattice. ( chjcom analog.) (Contributed by NM, 14-Sep-2011)

Ref Expression
Hypotheses latjcl.b B=BaseK
latjcl.j ˙=joinK
Assertion latjcl KLatXBYBX˙YB

Proof

Step Hyp Ref Expression
1 latjcl.b B=BaseK
2 latjcl.j ˙=joinK
3 eqid meetK=meetK
4 1 2 3 latlem KLatXBYBX˙YBXmeetKYB
5 4 simpld KLatXBYBX˙YB