Metamath Proof Explorer


Theorem latm32

Description: A rearrangement of lattice meet. ( in12 analog.) (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses olmass.b B=BaseK
olmass.m ˙=meetK
Assertion latm32 KOLXBYBZBX˙Y˙Z=X˙Z˙Y

Proof

Step Hyp Ref Expression
1 olmass.b B=BaseK
2 olmass.m ˙=meetK
3 ollat KOLKLat
4 1 2 latmcom KLatYBZBY˙Z=Z˙Y
5 3 4 syl3an1 KOLYBZBY˙Z=Z˙Y
6 5 3adant3r1 KOLXBYBZBY˙Z=Z˙Y
7 6 oveq2d KOLXBYBZBX˙Y˙Z=X˙Z˙Y
8 1 2 latmassOLD KOLXBYBZBX˙Y˙Z=X˙Y˙Z
9 simpl KOLXBYBZBKOL
10 simpr1 KOLXBYBZBXB
11 simpr3 KOLXBYBZBZB
12 simpr2 KOLXBYBZBYB
13 1 2 latmassOLD KOLXBZBYBX˙Z˙Y=X˙Z˙Y
14 9 10 11 12 13 syl13anc KOLXBYBZBX˙Z˙Y=X˙Z˙Y
15 7 8 14 3eqtr4d KOLXBYBZBX˙Y˙Z=X˙Z˙Y