Metamath Proof Explorer


Theorem latnlemlt

Description: Negation of "less than or equal to" expressed in terms of meet and less-than. ( nssinpss analog.) (Contributed by NM, 5-Feb-2012)

Ref Expression
Hypotheses latnlemlt.b B=BaseK
latnlemlt.l ˙=K
latnlemlt.s <˙=<K
latnlemlt.m ˙=meetK
Assertion latnlemlt KLatXBYB¬X˙YX˙Y<˙X

Proof

Step Hyp Ref Expression
1 latnlemlt.b B=BaseK
2 latnlemlt.l ˙=K
3 latnlemlt.s <˙=<K
4 latnlemlt.m ˙=meetK
5 1 2 4 latmle1 KLatXBYBX˙Y˙X
6 5 biantrurd KLatXBYBX˙YXX˙Y˙XX˙YX
7 1 2 4 latleeqm1 KLatXBYBX˙YX˙Y=X
8 7 necon3bbid KLatXBYB¬X˙YX˙YX
9 simp1 KLatXBYBKLat
10 1 4 latmcl KLatXBYBX˙YB
11 simp2 KLatXBYBXB
12 2 3 pltval KLatX˙YBXBX˙Y<˙XX˙Y˙XX˙YX
13 9 10 11 12 syl3anc KLatXBYBX˙Y<˙XX˙Y˙XX˙YX
14 6 8 13 3bitr4d KLatXBYB¬X˙YX˙Y<˙X