Metamath Proof Explorer


Theorem latnle

Description: Equivalent expressions for "not less than" in a lattice. ( chnle analog.) (Contributed by NM, 16-Nov-2011)

Ref Expression
Hypotheses latnle.b B=BaseK
latnle.l ˙=K
latnle.s <˙=<K
latnle.j ˙=joinK
Assertion latnle KLatXBYB¬Y˙XX<˙X˙Y

Proof

Step Hyp Ref Expression
1 latnle.b B=BaseK
2 latnle.l ˙=K
3 latnle.s <˙=<K
4 latnle.j ˙=joinK
5 1 2 4 latlej1 KLatXBYBX˙X˙Y
6 5 biantrurd KLatXBYBXX˙YX˙X˙YXX˙Y
7 1 2 4 latleeqj1 KLatYBXBY˙XY˙X=X
8 7 3com23 KLatXBYBY˙XY˙X=X
9 eqcom Y˙X=XX=Y˙X
10 8 9 bitrdi KLatXBYBY˙XX=Y˙X
11 1 4 latjcom KLatXBYBX˙Y=Y˙X
12 11 eqeq2d KLatXBYBX=X˙YX=Y˙X
13 10 12 bitr4d KLatXBYBY˙XX=X˙Y
14 13 necon3bbid KLatXBYB¬Y˙XXX˙Y
15 1 4 latjcl KLatXBYBX˙YB
16 2 3 pltval KLatXBX˙YBX<˙X˙YX˙X˙YXX˙Y
17 15 16 syld3an3 KLatXBYBX<˙X˙YX˙X˙YXX˙Y
18 6 14 17 3bitr4d KLatXBYB¬Y˙XX<˙X˙Y