Metamath Proof Explorer
		
		
		
		Description:  A lattice ordering is transitive.  Deduction version of lattr .
       (Contributed by NM, 3-Sep-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lattrd.b |  | 
					
						|  |  | lattrd.l |  | 
					
						|  |  | lattrd.1 |  | 
					
						|  |  | lattrd.2 |  | 
					
						|  |  | lattrd.3 |  | 
					
						|  |  | lattrd.4 |  | 
					
						|  |  | lattrd.5 |  | 
					
						|  |  | lattrd.6 |  | 
				
					|  | Assertion | lattrd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lattrd.b |  | 
						
							| 2 |  | lattrd.l |  | 
						
							| 3 |  | lattrd.1 |  | 
						
							| 4 |  | lattrd.2 |  | 
						
							| 5 |  | lattrd.3 |  | 
						
							| 6 |  | lattrd.4 |  | 
						
							| 7 |  | lattrd.5 |  | 
						
							| 8 |  | lattrd.6 |  | 
						
							| 9 | 1 2 | lattr |  | 
						
							| 10 | 3 4 5 6 9 | syl13anc |  | 
						
							| 11 | 7 8 10 | mp2and |  |