Metamath Proof Explorer


Theorem lcdsmul

Description: Scalar multiplication for the closed kernel vector space dual. (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses lcdsmul.h H = LHyp K
lcdsmul.u U = DVecH K W
lcdsmul.f F = Scalar U
lcdsmul.l L = Base F
lcdsmul.t · ˙ = F
lcdsmul.c C = LCDual K W
lcdsmul.s S = Scalar C
lcdsmul.m ˙ = S
lcdsmul.k φ K HL W H
lcdsmul.x φ X L
lcdsmul.y φ Y L
Assertion lcdsmul φ X ˙ Y = Y · ˙ X

Proof

Step Hyp Ref Expression
1 lcdsmul.h H = LHyp K
2 lcdsmul.u U = DVecH K W
3 lcdsmul.f F = Scalar U
4 lcdsmul.l L = Base F
5 lcdsmul.t · ˙ = F
6 lcdsmul.c C = LCDual K W
7 lcdsmul.s S = Scalar C
8 lcdsmul.m ˙ = S
9 lcdsmul.k φ K HL W H
10 lcdsmul.x φ X L
11 lcdsmul.y φ Y L
12 eqid opp r F = opp r F
13 1 2 3 12 6 7 9 lcdsca φ S = opp r F
14 13 fveq2d φ S = opp r F
15 8 14 syl5eq φ ˙ = opp r F
16 15 oveqd φ X ˙ Y = X opp r F Y
17 eqid opp r F = opp r F
18 4 5 12 17 opprmul X opp r F Y = Y · ˙ X
19 16 18 eqtrdi φ X ˙ Y = Y · ˙ X