Metamath Proof Explorer


Theorem lcmeq0

Description: The lcm of two integers is zero iff either is zero. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmeq0 MNMlcmN=0M=0N=0

Proof

Step Hyp Ref Expression
1 lcmn0cl MN¬M=0N=0MlcmN
2 1 nnne0d MN¬M=0N=0MlcmN0
3 2 ex MN¬M=0N=0MlcmN0
4 3 necon4bd MNMlcmN=0M=0N=0
5 oveq1 M=0MlcmN=0lcmN
6 0z 0
7 lcmcom N0Nlcm0=0lcmN
8 6 7 mpan2 NNlcm0=0lcmN
9 lcm0val NNlcm0=0
10 8 9 eqtr3d N0lcmN=0
11 5 10 sylan9eqr NM=0MlcmN=0
12 11 adantll MNM=0MlcmN=0
13 oveq2 N=0MlcmN=Mlcm0
14 lcm0val MMlcm0=0
15 13 14 sylan9eqr MN=0MlcmN=0
16 15 adantlr MNN=0MlcmN=0
17 12 16 jaodan MNM=0N=0MlcmN=0
18 17 ex MNM=0N=0MlcmN=0
19 4 18 impbid MNMlcmN=0M=0N=0