Metamath Proof Explorer


Theorem ldiv

Description: Left-division. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses ldiv.a φA
ldiv.b φB
ldiv.c φC
ldiv.bn0 φB0
Assertion ldiv φAB=CA=CB

Proof

Step Hyp Ref Expression
1 ldiv.a φA
2 ldiv.b φB
3 ldiv.c φC
4 ldiv.bn0 φB0
5 oveq1 AB=CABB=CB
6 1 2 4 divcan4d φABB=A
7 6 eqeq1d φABB=CBA=CB
8 5 7 imbitrid φAB=CA=CB
9 oveq1 A=CBAB=CBB
10 3 2 4 divcan1d φCBB=C
11 10 eqeq2d φAB=CBBAB=C
12 9 11 imbitrid φA=CBAB=C
13 8 12 impbid φAB=CA=CB