Metamath Proof Explorer


Theorem ldlfcntref

Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020)

Ref Expression
Hypothesis ldlfcntref.x X=J
Assertion ldlfcntref JLdlfUJX=Uv𝒫JvωvRefU

Proof

Step Hyp Ref Expression
1 ldlfcntref.x X=J
2 df-ldlf Ldlf=CovHasRefx|xω
3 vex vV
4 breq1 x=vxωvω
5 3 4 elab vx|xωvω
6 5 biimpi vx|xωvω
7 1 2 6 crefdf JLdlfUJX=Uv𝒫JvωvRefU