Metamath Proof Explorer


Theorem ldualfvs

Description: Scalar product operation for the dual of a vector space. (Contributed by NM, 18-Oct-2014)

Ref Expression
Hypotheses ldualfvs.f F = LFnl W
ldualfvs.v V = Base W
ldualfvs.r R = Scalar W
ldualfvs.k K = Base R
ldualfvs.t × ˙ = R
ldualfvs.d D = LDual W
ldualfvs.s ˙ = D
ldualfvs.w φ W Y
ldualfvs.m · ˙ = k K , f F f × ˙ f V × k
Assertion ldualfvs φ ˙ = · ˙

Proof

Step Hyp Ref Expression
1 ldualfvs.f F = LFnl W
2 ldualfvs.v V = Base W
3 ldualfvs.r R = Scalar W
4 ldualfvs.k K = Base R
5 ldualfvs.t × ˙ = R
6 ldualfvs.d D = LDual W
7 ldualfvs.s ˙ = D
8 ldualfvs.w φ W Y
9 ldualfvs.m · ˙ = k K , f F f × ˙ f V × k
10 eqid + R = + R
11 eqid f + R F × F = f + R F × F
12 eqid opp r R = opp r R
13 eqid k K , f F f × ˙ f V × k = k K , f F f × ˙ f V × k
14 2 10 11 1 6 3 4 5 12 13 8 ldualset φ D = Base ndx F + ndx f + R F × F Scalar ndx opp r R ndx k K , f F f × ˙ f V × k
15 14 fveq2d φ D = Base ndx F + ndx f + R F × F Scalar ndx opp r R ndx k K , f F f × ˙ f V × k
16 4 fvexi K V
17 1 fvexi F V
18 16 17 mpoex k K , f F f × ˙ f V × k V
19 eqid Base ndx F + ndx f + R F × F Scalar ndx opp r R ndx k K , f F f × ˙ f V × k = Base ndx F + ndx f + R F × F Scalar ndx opp r R ndx k K , f F f × ˙ f V × k
20 19 lmodvsca k K , f F f × ˙ f V × k V k K , f F f × ˙ f V × k = Base ndx F + ndx f + R F × F Scalar ndx opp r R ndx k K , f F f × ˙ f V × k
21 18 20 ax-mp k K , f F f × ˙ f V × k = Base ndx F + ndx f + R F × F Scalar ndx opp r R ndx k K , f F f × ˙ f V × k
22 9 21 eqtri · ˙ = Base ndx F + ndx f + R F × F Scalar ndx opp r R ndx k K , f F f × ˙ f V × k
23 15 7 22 3eqtr4g φ ˙ = · ˙