Metamath Proof Explorer


Theorem lediv12ad

Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltmul1d.1 φA
ltmul1d.2 φB
ltmul1d.3 φC+
lediv12ad.4 φD
lediv12ad.5 φ0A
lediv12ad.6 φAB
lediv12ad.7 φCD
Assertion lediv12ad φADBC

Proof

Step Hyp Ref Expression
1 ltmul1d.1 φA
2 ltmul1d.2 φB
3 ltmul1d.3 φC+
4 lediv12ad.4 φD
5 lediv12ad.5 φ0A
6 lediv12ad.6 φAB
7 lediv12ad.7 φCD
8 1 2 jca φAB
9 5 6 jca φ0AAB
10 3 rpred φC
11 10 4 jca φCD
12 3 rpgt0d φ0<C
13 12 7 jca φ0<CCD
14 lediv12a AB0AABCD0<CCDADBC
15 8 9 11 13 14 syl22anc φADBC