Metamath Proof Explorer


Theorem leneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
leltned.3 φAB
leneltd.4 φBA
Assertion leneltd φA<B

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 leltned.3 φAB
4 leneltd.4 φBA
5 1 2 3 leltned φA<BBA
6 4 5 mpbird φA<B