Metamath Proof Explorer


Theorem lerec2d

Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φA+
rpaddcld.1 φB+
lerec2d.2 φA1B
Assertion lerec2d φB1A

Proof

Step Hyp Ref Expression
1 rpred.1 φA+
2 rpaddcld.1 φB+
3 lerec2d.2 φA1B
4 1 rpregt0d φA0<A
5 2 rpregt0d φB0<B
6 lerec2 A0<AB0<BA1BB1A
7 4 5 6 syl2anc φA1BB1A
8 3 7 mpbid φB1A