Metamath Proof Explorer


Theorem lflvsdi2a

Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfldi.v V = Base W
lfldi.r R = Scalar W
lfldi.k K = Base R
lfldi.p + ˙ = + R
lfldi.t · ˙ = R
lfldi.f F = LFnl W
lfldi.w φ W LMod
lfldi.x φ X K
lfldi2.y φ Y K
lfldi2.g φ G F
Assertion lflvsdi2a φ G · ˙ f V × X + ˙ Y = G · ˙ f V × X + ˙ f G · ˙ f V × Y

Proof

Step Hyp Ref Expression
1 lfldi.v V = Base W
2 lfldi.r R = Scalar W
3 lfldi.k K = Base R
4 lfldi.p + ˙ = + R
5 lfldi.t · ˙ = R
6 lfldi.f F = LFnl W
7 lfldi.w φ W LMod
8 lfldi.x φ X K
9 lfldi2.y φ Y K
10 lfldi2.g φ G F
11 1 fvexi V V
12 11 a1i φ V V
13 12 8 9 ofc12 φ V × X + ˙ f V × Y = V × X + ˙ Y
14 13 oveq2d φ G · ˙ f V × X + ˙ f V × Y = G · ˙ f V × X + ˙ Y
15 1 2 3 4 5 6 7 8 9 10 lflvsdi2 φ G · ˙ f V × X + ˙ f V × Y = G · ˙ f V × X + ˙ f G · ˙ f V × Y
16 14 15 eqtr3d φ G · ˙ f V × X + ˙ Y = G · ˙ f V × X + ˙ f G · ˙ f V × Y