Metamath Proof Explorer


Theorem lflvsdi2a

Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses lfldi.v V=BaseW
lfldi.r R=ScalarW
lfldi.k K=BaseR
lfldi.p +˙=+R
lfldi.t ·˙=R
lfldi.f F=LFnlW
lfldi.w φWLMod
lfldi.x φXK
lfldi2.y φYK
lfldi2.g φGF
Assertion lflvsdi2a φG·˙fV×X+˙Y=G·˙fV×X+˙fG·˙fV×Y

Proof

Step Hyp Ref Expression
1 lfldi.v V=BaseW
2 lfldi.r R=ScalarW
3 lfldi.k K=BaseR
4 lfldi.p +˙=+R
5 lfldi.t ·˙=R
6 lfldi.f F=LFnlW
7 lfldi.w φWLMod
8 lfldi.x φXK
9 lfldi2.y φYK
10 lfldi2.g φGF
11 1 fvexi VV
12 11 a1i φVV
13 12 8 9 ofc12 φV×X+˙fV×Y=V×X+˙Y
14 13 oveq2d φG·˙fV×X+˙fV×Y=G·˙fV×X+˙Y
15 1 2 3 4 5 6 7 8 9 10 lflvsdi2 φG·˙fV×X+˙fV×Y=G·˙fV×X+˙fG·˙fV×Y
16 14 15 eqtr3d φG·˙fV×X+˙Y=G·˙fV×X+˙fG·˙fV×Y