Metamath Proof Explorer


Theorem lgsfcl3

Description: Closure of the function F which defines the Legendre symbol at the primes. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis lgsval4.1 F=nifnA/LnnpCntN1
Assertion lgsfcl3 ANN0F:

Proof

Step Hyp Ref Expression
1 lgsval4.1 F=nifnA/LnnpCntN1
2 eqid nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1=nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1
3 2 lgsfcl ANN0nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1:
4 2 lgsval4lem ANN0nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1=nifnA/LnnpCntN1
5 4 1 eqtr4di ANN0nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1=F
6 5 feq1d ANN0nifnifn=2if2A0ifAmod81711An12+1modn1npCntN1:F:
7 3 6 mpbid ANN0F: