Description: The Legendre symbol at any prime (even at 2) is 0 iff the prime does not divide the first argument. See definition in ApostolNT p. 179. (Contributed by AV, 20-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | lgsprme0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmz | |
|
2 | lgsne0 | |
|
3 | 1 2 | sylan2 | |
4 | coprm | |
|
5 | 4 | ancoms | |
6 | 1 | anim1i | |
7 | 6 | ancoms | |
8 | gcdcom | |
|
9 | 7 8 | syl | |
10 | 9 | eqeq1d | |
11 | 5 10 | bitr2d | |
12 | prmnn | |
|
13 | dvdsval3 | |
|
14 | 12 13 | sylan | |
15 | 14 | ancoms | |
16 | 15 | notbid | |
17 | 3 11 16 | 3bitrd | |
18 | 17 | necon4abid | |