Metamath Proof Explorer


Theorem lhpat4N

Description: Property of an atom under a co-atom. (Contributed by NM, 24-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses lhpat.l ˙=K
lhpat.j ˙=joinK
lhpat.m ˙=meetK
lhpat.a A=AtomsK
lhpat.h H=LHypK
Assertion lhpat4N KHLWHPA¬P˙WUAU˙WP˙U˙W=U

Proof

Step Hyp Ref Expression
1 lhpat.l ˙=K
2 lhpat.j ˙=joinK
3 lhpat.m ˙=meetK
4 lhpat.a A=AtomsK
5 lhpat.h H=LHypK
6 simp1 KHLWHPA¬P˙WUAU˙WKHLWH
7 simp2 KHLWHPA¬P˙WUAU˙WPA¬P˙W
8 simp3l KHLWHPA¬P˙WUAU˙WUA
9 eqid BaseK=BaseK
10 9 4 atbase UAUBaseK
11 8 10 syl KHLWHPA¬P˙WUAU˙WUBaseK
12 simp3r KHLWHPA¬P˙WUAU˙WU˙W
13 9 1 2 3 4 5 lhple KHLWHPA¬P˙WUBaseKU˙WP˙U˙W=U
14 6 7 11 12 13 syl112anc KHLWHPA¬P˙WUAU˙WP˙U˙W=U