Metamath Proof Explorer


Theorem lhpexle1

Description: There exists an atom under a co-atom different from any given element. (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses lhpex1.l ˙=K
lhpex1.a A=AtomsK
lhpex1.h H=LHypK
Assertion lhpexle1 KHLWHpAp˙WpX

Proof

Step Hyp Ref Expression
1 lhpex1.l ˙=K
2 lhpex1.a A=AtomsK
3 lhpex1.h H=LHypK
4 1 2 3 lhpexle KHLWHpAp˙W
5 tru
6 5 jctr p˙Wp˙W
7 6 reximi pAp˙WpAp˙W
8 4 7 syl KHLWHpAp˙W
9 simpll KHLWHXAX˙WKHL
10 simprl KHLWHXAX˙WXA
11 eqid BaseK=BaseK
12 11 3 lhpbase WHWBaseK
13 12 ad2antlr KHLWHXAX˙WWBaseK
14 eqid <K=<K
15 1 14 2 3 lhplt KHLWHXAX˙WX<KW
16 11 14 2 2atlt KHLXAWBaseKX<KWpApXp<KW
17 9 10 13 15 16 syl31anc KHLWHXAX˙WpApXp<KW
18 simp3r KHLWHXAX˙WpApXp<KWp<KW
19 simp1ll KHLWHXAX˙WpApXp<KWKHL
20 simp2 KHLWHXAX˙WpApXp<KWpA
21 simp1lr KHLWHXAX˙WpApXp<KWWH
22 1 14 pltle KHLpAWHp<KWp˙W
23 19 20 21 22 syl3anc KHLWHXAX˙WpApXp<KWp<KWp˙W
24 18 23 mpd KHLWHXAX˙WpApXp<KWp˙W
25 trud KHLWHXAX˙WpApXp<KW
26 simp3l KHLWHXAX˙WpApXp<KWpX
27 24 25 26 3jca KHLWHXAX˙WpApXp<KWp˙WpX
28 27 3expia KHLWHXAX˙WpApXp<KWp˙WpX
29 28 reximdva KHLWHXAX˙WpApXp<KWpAp˙WpX
30 17 29 mpd KHLWHXAX˙WpAp˙WpX
31 8 30 lhpexle1lem KHLWHpAp˙WpX
32 3simpb p˙WpXp˙WpX
33 32 reximi pAp˙WpXpAp˙WpX
34 31 33 syl KHLWHpAp˙WpX