Metamath Proof Explorer


Theorem lidlmcld

Description: An ideal is closed under left-multiplication by elements of the full ring. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses lidlmcld.1 U = LIdeal R
lidlmcld.2 B = Base R
lidlmcld.3 · ˙ = R
lidlmcld.4 φ R Ring
lidlmcld.5 φ I U
lidlmcld.6 φ X B
lidlmcld.7 φ Y I
Assertion lidlmcld φ X · ˙ Y I

Proof

Step Hyp Ref Expression
1 lidlmcld.1 U = LIdeal R
2 lidlmcld.2 B = Base R
3 lidlmcld.3 · ˙ = R
4 lidlmcld.4 φ R Ring
5 lidlmcld.5 φ I U
6 lidlmcld.6 φ X B
7 lidlmcld.7 φ Y I
8 1 2 3 lidlmcl R Ring I U X B Y I X · ˙ Y I
9 4 5 6 7 8 syl22anc φ X · ˙ Y I