Metamath Proof Explorer


Theorem lidlsubcl

Description: An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses lidlcl.u U=LIdealR
lidlsubcl.m -˙=-R
Assertion lidlsubcl RRingIUXIYIX-˙YI

Proof

Step Hyp Ref Expression
1 lidlcl.u U=LIdealR
2 lidlsubcl.m -˙=-R
3 1 lidlsubg RRingIUISubGrpR
4 3 3adant3 RRingIUXIYIISubGrpR
5 simp3l RRingIUXIYIXI
6 simp3r RRingIUXIYIYI
7 2 subgsubcl ISubGrpRXIYIX-˙YI
8 4 5 6 7 syl3anc RRingIUXIYIX-˙YI
9 8 3expa RRingIUXIYIX-˙YI