Metamath Proof Explorer


Theorem limcflflem

Description: Lemma for limcflf . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f φF:A
limcflf.a φA
limcflf.b φBlimPtKA
limcflf.k K=TopOpenfld
limcflf.c C=AB
limcflf.l L=neiKB𝑡C
Assertion limcflflem φLFilC

Proof

Step Hyp Ref Expression
1 limcflf.f φF:A
2 limcflf.a φA
3 limcflf.b φBlimPtKA
4 limcflf.k K=TopOpenfld
5 limcflf.c C=AB
6 limcflf.l L=neiKB𝑡C
7 4 cnfldtop KTop
8 4 cnfldtopon KTopOn
9 8 toponunii =K
10 9 islp KTopABlimPtKABclsKAB
11 7 2 10 sylancr φBlimPtKABclsKAB
12 3 11 mpbid φBclsKAB
13 5 fveq2i clsKC=clsKAB
14 12 13 eleqtrrdi φBclsKC
15 difss ABA
16 5 15 eqsstri CA
17 16 2 sstrid φC
18 9 lpss KTopAlimPtKA
19 7 2 18 sylancr φlimPtKA
20 19 3 sseldd φB
21 trnei KTopOnCBBclsKCneiKB𝑡CFilC
22 8 17 20 21 mp3an2i φBclsKCneiKB𝑡CFilC
23 14 22 mpbid φneiKB𝑡CFilC
24 6 23 eqeltrid φLFilC