Description: Lemma for limcflf . (Contributed by Mario Carneiro, 25-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limcflf.f | |
|
limcflf.a | |
||
limcflf.b | |
||
limcflf.k | |
||
limcflf.c | |
||
limcflf.l | |
||
Assertion | limcflflem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcflf.f | |
|
2 | limcflf.a | |
|
3 | limcflf.b | |
|
4 | limcflf.k | |
|
5 | limcflf.c | |
|
6 | limcflf.l | |
|
7 | 4 | cnfldtop | |
8 | 4 | cnfldtopon | |
9 | 8 | toponunii | |
10 | 9 | islp | |
11 | 7 2 10 | sylancr | |
12 | 3 11 | mpbid | |
13 | 5 | fveq2i | |
14 | 12 13 | eleqtrrdi | |
15 | difss | |
|
16 | 5 15 | eqsstri | |
17 | 16 2 | sstrid | |
18 | 9 | lpss | |
19 | 7 2 18 | sylancr | |
20 | 19 3 | sseldd | |
21 | trnei | |
|
22 | 8 17 20 21 | mp3an2i | |
23 | 14 22 | mpbid | |
24 | 6 23 | eqeltrid | |