Metamath Proof Explorer


Theorem limsupcli

Description: Closure of the superior limit. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis limsupcli.1 F V
Assertion limsupcli lim sup F *

Proof

Step Hyp Ref Expression
1 limsupcli.1 F V
2 limsupcl F V lim sup F *
3 1 2 ax-mp lim sup F *