Metamath Proof Explorer


Theorem linecgrand

Description: Deduction form of linecgr . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses linecgrand.1 φN
linecgrand.2 φA𝔼N
linecgrand.3 φB𝔼N
linecgrand.4 φC𝔼N
linecgrand.5 φP𝔼N
linecgrand.6 φQ𝔼N
linecgrand.7 φψAB
linecgrand.8 φψAColinearBC
linecgrand.9 φψAPCgrAQ
linecgrand.10 φψBPCgrBQ
Assertion linecgrand φψCPCgrCQ

Proof

Step Hyp Ref Expression
1 linecgrand.1 φN
2 linecgrand.2 φA𝔼N
3 linecgrand.3 φB𝔼N
4 linecgrand.4 φC𝔼N
5 linecgrand.5 φP𝔼N
6 linecgrand.6 φQ𝔼N
7 linecgrand.7 φψAB
8 linecgrand.8 φψAColinearBC
9 linecgrand.9 φψAPCgrAQ
10 linecgrand.10 φψBPCgrBQ
11 7 8 jca φψABAColinearBC
12 9 10 jca φψAPCgrAQBPCgrBQ
13 linecgr NA𝔼NB𝔼NC𝔼NP𝔼NQ𝔼NABAColinearBCAPCgrAQBPCgrBQCPCgrCQ
14 1 2 3 4 5 6 13 syl132anc φABAColinearBCAPCgrAQBPCgrBQCPCgrCQ
15 14 adantr φψABAColinearBCAPCgrAQBPCgrBQCPCgrCQ
16 11 12 15 mp2and φψCPCgrCQ