Metamath Proof Explorer


Theorem linerflx2

Description: Reflexivity law for line membership. Part of theorem 6.17 of Schwabhauser p. 45. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion linerflx2 NP𝔼NQ𝔼NPQQPLineQ

Proof

Step Hyp Ref Expression
1 necom PQQP
2 1 3anbi3i P𝔼NQ𝔼NPQP𝔼NQ𝔼NQP
3 3ancoma P𝔼NQ𝔼NQPQ𝔼NP𝔼NQP
4 2 3 bitri P𝔼NQ𝔼NPQQ𝔼NP𝔼NQP
5 linerflx1 NQ𝔼NP𝔼NQPQQLineP
6 4 5 sylan2b NP𝔼NQ𝔼NPQQQLineP
7 linecom NP𝔼NQ𝔼NPQPLineQ=QLineP
8 6 7 eleqtrrd NP𝔼NQ𝔼NPQQPLineQ