Metamath Proof Explorer


Theorem lineset

Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011)

Ref Expression
Hypotheses lineset.l ˙=K
lineset.j ˙=joinK
lineset.a A=AtomsK
lineset.n N=LinesK
Assertion lineset KBN=s|qArAqrs=pA|p˙q˙r

Proof

Step Hyp Ref Expression
1 lineset.l ˙=K
2 lineset.j ˙=joinK
3 lineset.a A=AtomsK
4 lineset.n N=LinesK
5 elex KBKV
6 fveq2 k=KAtomsk=AtomsK
7 6 3 eqtr4di k=KAtomsk=A
8 fveq2 k=Kk=K
9 8 1 eqtr4di k=Kk=˙
10 9 breqd k=Kpkqjoinkrp˙qjoinkr
11 fveq2 k=Kjoink=joinK
12 11 2 eqtr4di k=Kjoink=˙
13 12 oveqd k=Kqjoinkr=q˙r
14 13 breq2d k=Kp˙qjoinkrp˙q˙r
15 10 14 bitrd k=Kpkqjoinkrp˙q˙r
16 7 15 rabeqbidv k=KpAtomsk|pkqjoinkr=pA|p˙q˙r
17 16 eqeq2d k=Ks=pAtomsk|pkqjoinkrs=pA|p˙q˙r
18 17 anbi2d k=Kqrs=pAtomsk|pkqjoinkrqrs=pA|p˙q˙r
19 7 18 rexeqbidv k=KrAtomskqrs=pAtomsk|pkqjoinkrrAqrs=pA|p˙q˙r
20 7 19 rexeqbidv k=KqAtomskrAtomskqrs=pAtomsk|pkqjoinkrqArAqrs=pA|p˙q˙r
21 20 abbidv k=Ks|qAtomskrAtomskqrs=pAtomsk|pkqjoinkr=s|qArAqrs=pA|p˙q˙r
22 df-lines Lines=kVs|qAtomskrAtomskqrs=pAtomsk|pkqjoinkr
23 3 fvexi AV
24 df-sn pA|p˙q˙r=s|s=pA|p˙q˙r
25 snex pA|p˙q˙rV
26 24 25 eqeltrri s|s=pA|p˙q˙rV
27 simpr qrs=pA|p˙q˙rs=pA|p˙q˙r
28 27 ss2abi s|qrs=pA|p˙q˙rs|s=pA|p˙q˙r
29 26 28 ssexi s|qrs=pA|p˙q˙rV
30 23 23 29 ab2rexex2 s|qArAqrs=pA|p˙q˙rV
31 21 22 30 fvmpt KVLinesK=s|qArAqrs=pA|p˙q˙r
32 4 31 eqtrid KVN=s|qArAqrs=pA|p˙q˙r
33 5 32 syl KBN=s|qArAqrs=pA|p˙q˙r