Metamath Proof Explorer


Theorem llyeq

Description: Equality theorem for the Locally A predicate. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyeq A=BLocally A = Locally B

Proof

Step Hyp Ref Expression
1 eleq2 A=Bj𝑡uAj𝑡uB
2 1 anbi2d A=Byuj𝑡uAyuj𝑡uB
3 2 rexbidv A=Buj𝒫xyuj𝑡uAuj𝒫xyuj𝑡uB
4 3 2ralbidv A=Bxjyxuj𝒫xyuj𝑡uAxjyxuj𝒫xyuj𝑡uB
5 4 rabbidv A=BjTop|xjyxuj𝒫xyuj𝑡uA=jTop|xjyxuj𝒫xyuj𝑡uB
6 df-lly Locally A = jTop|xjyxuj𝒫xyuj𝑡uA
7 df-lly Locally B = jTop|xjyxuj𝒫xyuj𝑡uB
8 5 6 7 3eqtr4g A=BLocally A = Locally B