Metamath Proof Explorer


Theorem lmat22e11

Description: Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020)

Ref Expression
Hypotheses lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
lmat22.a φAV
lmat22.b φBV
lmat22.c φCV
lmat22.d φDV
Assertion lmat22e11 φ1M1=A

Proof

Step Hyp Ref Expression
1 lmat22.m M=litMat⟨“⟨“AB”⟩⟨“CD”⟩”⟩
2 lmat22.a φAV
3 lmat22.b φBV
4 lmat22.c φCV
5 lmat22.d φDV
6 2nn 2
7 6 a1i φ2
8 2 3 s2cld φ⟨“AB”⟩WordV
9 4 5 s2cld φ⟨“CD”⟩WordV
10 8 9 s2cld φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩WordWordV
11 s2len ⟨“⟨“AB”⟩⟨“CD”⟩”⟩=2
12 11 a1i φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩=2
13 1 2 3 4 5 lmat22lem φi0..^2⟨“⟨“AB”⟩⟨“CD”⟩”⟩i=2
14 2eluzge1 21
15 eluzfz1 21112
16 14 15 ax-mp 112
17 16 a1i φ112
18 1 7 10 12 13 17 17 lmatfval φ1M1=⟨“⟨“AB”⟩⟨“CD”⟩”⟩1111
19 1m1e0 11=0
20 19 fveq2i ⟨“⟨“AB”⟩⟨“CD”⟩”⟩11=⟨“⟨“AB”⟩⟨“CD”⟩”⟩0
21 s2fv0 ⟨“AB”⟩WordV⟨“⟨“AB”⟩⟨“CD”⟩”⟩0=⟨“AB”⟩
22 8 21 syl φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩0=⟨“AB”⟩
23 20 22 eqtrid φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩11=⟨“AB”⟩
24 19 a1i φ11=0
25 23 24 fveq12d φ⟨“⟨“AB”⟩⟨“CD”⟩”⟩1111=⟨“AB”⟩0
26 s2fv0 AV⟨“AB”⟩0=A
27 2 26 syl φ⟨“AB”⟩0=A
28 18 25 27 3eqtrd φ1M1=A