Metamath Proof Explorer


Theorem lmcvg

Description: Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Hypotheses lmcvg.1 Z=M
lmcvg.3 φPU
lmcvg.4 φM
lmcvg.5 φFtJP
lmcvg.6 φUJ
Assertion lmcvg φjZkjFkU

Proof

Step Hyp Ref Expression
1 lmcvg.1 Z=M
2 lmcvg.3 φPU
3 lmcvg.4 φM
4 lmcvg.5 φFtJP
5 lmcvg.6 φUJ
6 eleq2 u=UPuPU
7 eleq2 u=UFkuFkU
8 7 rexralbidv u=UjZkjFkujZkjFkU
9 6 8 imbi12d u=UPujZkjFkuPUjZkjFkU
10 lmrcl FtJPJTop
11 4 10 syl φJTop
12 toptopon2 JTopJTopOnJ
13 11 12 sylib φJTopOnJ
14 13 1 3 lmbr2 φFtJPFJ𝑝𝑚PJuJPujZkjkdomFFku
15 4 14 mpbid φFJ𝑝𝑚PJuJPujZkjkdomFFku
16 15 simp3d φuJPujZkjkdomFFku
17 simpr kdomFFkuFku
18 17 ralimi kjkdomFFkukjFku
19 18 reximi jZkjkdomFFkujZkjFku
20 19 imim2i PujZkjkdomFFkuPujZkjFku
21 20 ralimi uJPujZkjkdomFFkuuJPujZkjFku
22 16 21 syl φuJPujZkjFku
23 9 22 5 rspcdva φPUjZkjFkU
24 2 23 mpd φjZkjFkU