Metamath Proof Explorer


Theorem lmhmimasvsca

Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses lmhmimasvsca.w W=F𝑠V
lmhmimasvsca.b B=BaseV
lmhmimasvsca.c C=BaseW
lmhmimasvsca.x φXK
lmhmimasvsca.y φYB
lmhmimasvsca.1 φF:BontoC
lmhmimasvsca.f φFVLMHomW
lmhmimasvsca.2 ·˙=V
lmhmimasvsca.3 ×˙=W
lmhmimasvsca.k K=BaseScalarV
Assertion lmhmimasvsca φX×˙FY=FX·˙Y

Proof

Step Hyp Ref Expression
1 lmhmimasvsca.w W=F𝑠V
2 lmhmimasvsca.b B=BaseV
3 lmhmimasvsca.c C=BaseW
4 lmhmimasvsca.x φXK
5 lmhmimasvsca.y φYB
6 lmhmimasvsca.1 φF:BontoC
7 lmhmimasvsca.f φFVLMHomW
8 lmhmimasvsca.2 ·˙=V
9 lmhmimasvsca.3 ×˙=W
10 lmhmimasvsca.k K=BaseScalarV
11 1 a1i φW=F𝑠V
12 2 a1i φB=BaseV
13 lmhmlmod1 FVLMHomWVLMod
14 7 13 syl φVLMod
15 eqid ScalarV=ScalarV
16 simpr φpKaBqBFa=FqFa=Fq
17 16 oveq2d φpKaBqBFa=Fqp×˙Fa=p×˙Fq
18 7 ad2antrr φpKaBqBFa=FqFVLMHomW
19 simplr1 φpKaBqBFa=FqpK
20 simplr2 φpKaBqBFa=FqaB
21 15 10 2 8 9 lmhmlin FVLMHomWpKaBFp·˙a=p×˙Fa
22 18 19 20 21 syl3anc φpKaBqBFa=FqFp·˙a=p×˙Fa
23 simplr3 φpKaBqBFa=FqqB
24 15 10 2 8 9 lmhmlin FVLMHomWpKqBFp·˙q=p×˙Fq
25 18 19 23 24 syl3anc φpKaBqBFa=FqFp·˙q=p×˙Fq
26 17 22 25 3eqtr4d φpKaBqBFa=FqFp·˙a=Fp·˙q
27 26 ex φpKaBqBFa=FqFp·˙a=Fp·˙q
28 11 12 6 14 15 10 8 9 27 imasvscaval φXKYBX×˙FY=FX·˙Y
29 4 5 28 mpd3an23 φX×˙FY=FX·˙Y