Metamath Proof Explorer


Theorem lmicsym

Description: Module isomorphism is symmetric. (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Assertion lmicsym R𝑚SS𝑚R

Proof

Step Hyp Ref Expression
1 brlmic R𝑚SRLMIsoS
2 n0 RLMIsoSffRLMIsoS
3 lmimcnv fRLMIsoSf-1SLMIsoR
4 brlmici f-1SLMIsoRS𝑚R
5 3 4 syl fRLMIsoSS𝑚R
6 5 exlimiv ffRLMIsoSS𝑚R
7 2 6 sylbi RLMIsoSS𝑚R
8 1 7 sylbi R𝑚SS𝑚R