Metamath Proof Explorer


Theorem lmodsubid

Description: Subtraction of a vector from itself. ( hvsubid analog.) (Contributed by NM, 16-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodsubeq0.v V=BaseW
lmodsubeq0.o 0˙=0W
lmodsubeq0.m -˙=-W
Assertion lmodsubid WLModAVA-˙A=0˙

Proof

Step Hyp Ref Expression
1 lmodsubeq0.v V=BaseW
2 lmodsubeq0.o 0˙=0W
3 lmodsubeq0.m -˙=-W
4 lmodgrp WLModWGrp
5 1 2 3 grpsubid WGrpAVA-˙A=0˙
6 4 5 sylan WLModAVA-˙A=0˙