Metamath Proof Explorer


Theorem lmodvscl

Description: Closure of scalar product for a left module. ( hvmulcl analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodvscl.v V=BaseW
lmodvscl.f F=ScalarW
lmodvscl.s ·˙=W
lmodvscl.k K=BaseF
Assertion lmodvscl WLModRKXVR·˙XV

Proof

Step Hyp Ref Expression
1 lmodvscl.v V=BaseW
2 lmodvscl.f F=ScalarW
3 lmodvscl.s ·˙=W
4 lmodvscl.k K=BaseF
5 biid WLModWLMod
6 pm4.24 RKRKRK
7 pm4.24 XVXVXV
8 eqid +W=+W
9 eqid +F=+F
10 eqid F=F
11 eqid 1F=1F
12 1 8 3 2 4 9 10 11 lmodlema WLModRKRKXVXVR·˙XVR·˙X+WX=R·˙X+WR·˙XR+FR·˙X=R·˙X+WR·˙XRFR·˙X=R·˙R·˙X1F·˙X=X
13 12 simpld WLModRKRKXVXVR·˙XVR·˙X+WX=R·˙X+WR·˙XR+FR·˙X=R·˙X+WR·˙X
14 13 simp1d WLModRKRKXVXVR·˙XV
15 5 6 7 14 syl3anb WLModRKXVR·˙XV