Metamath Proof Explorer
Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
lmodvscld.v |
|
|
|
lmodvscld.f |
|
|
|
lmodvscld.s |
|
|
|
lmodvscld.k |
|
|
|
lmodvscld.w |
|
|
|
lmodvscld.r |
|
|
|
lmodvscld.x |
|
|
Assertion |
lmodvscld |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmodvscld.v |
|
| 2 |
|
lmodvscld.f |
|
| 3 |
|
lmodvscld.s |
|
| 4 |
|
lmodvscld.k |
|
| 5 |
|
lmodvscld.w |
|
| 6 |
|
lmodvscld.r |
|
| 7 |
|
lmodvscld.x |
|
| 8 |
1 2 3 4
|
lmodvscl |
|
| 9 |
5 6 7 8
|
syl3anc |
|