Metamath Proof Explorer


Theorem lmodvscld

Description: Closure of scalar product for a left module. (Contributed by SN, 15-Mar-2025)

Ref Expression
Hypotheses lmodvscld.v V=BaseW
lmodvscld.f F=ScalarW
lmodvscld.s ·˙=W
lmodvscld.k K=BaseF
lmodvscld.w φWLMod
lmodvscld.r φRK
lmodvscld.x φXV
Assertion lmodvscld φR·˙XV

Proof

Step Hyp Ref Expression
1 lmodvscld.v V=BaseW
2 lmodvscld.f F=ScalarW
3 lmodvscld.s ·˙=W
4 lmodvscld.k K=BaseF
5 lmodvscld.w φWLMod
6 lmodvscld.r φRK
7 lmodvscld.x φXV
8 1 2 3 4 lmodvscl WLModRKXVR·˙XV
9 5 6 7 8 syl3anc φR·˙XV