Metamath Proof Explorer


Theorem lncnopbd

Description: A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion lncnopbd TLinOpContOpTBndLinOp

Proof

Step Hyp Ref Expression
1 elin TLinOpContOpTLinOpTContOp
2 lnopcnbd TLinOpTContOpTBndLinOp
3 2 biimpa TLinOpTContOpTBndLinOp
4 bdopln TBndLinOpTLinOp
5 2 biimparc TBndLinOpTLinOpTContOp
6 4 5 mpdan TBndLinOpTContOp
7 4 6 jca TBndLinOpTLinOpTContOp
8 3 7 impbii TLinOpTContOpTBndLinOp
9 1 8 bitri TLinOpContOpTBndLinOp