Metamath Proof Explorer


Theorem lnfnf

Description: A linear Hilbert space functional is a functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion lnfnf TLinFnT:

Proof

Step Hyp Ref Expression
1 ellnfn TLinFnT:xyzTxy+z=xTy+Tz
2 1 simplbi TLinFnT: