Metamath Proof Explorer


Theorem lnjatN

Description: Given an atom in a line, there is another atom which when joined equals the line. (Contributed by NM, 30-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lnjat.b B=BaseK
lnjat.l ˙=K
lnjat.j ˙=joinK
lnjat.a A=AtomsK
lnjat.n N=LinesK
lnjat.m M=pmapK
Assertion lnjatN KHLXBPAMXNP˙XqAqPX=P˙q

Proof

Step Hyp Ref Expression
1 lnjat.b B=BaseK
2 lnjat.l ˙=K
3 lnjat.j ˙=joinK
4 lnjat.a A=AtomsK
5 lnjat.n N=LinesK
6 lnjat.m M=pmapK
7 simpl1 KHLXBPAMXNP˙XKHL
8 simpl2 KHLXBPAMXNP˙XXB
9 simprl KHLXBPAMXNP˙XMXN
10 1 2 4 5 6 lnatexN KHLXBMXNqAqPq˙X
11 7 8 9 10 syl3anc KHLXBPAMXNP˙XqAqPq˙X
12 simp3l KHLXBPAMXNP˙XqAqPq˙XqP
13 simp1l1 KHLXBPAMXNP˙XqAqPq˙XKHL
14 simp1l2 KHLXBPAMXNP˙XqAqPq˙XXB
15 simp1rl KHLXBPAMXNP˙XqAqPq˙XMXN
16 simp1l3 KHLXBPAMXNP˙XqAqPq˙XPA
17 simp2 KHLXBPAMXNP˙XqAqPq˙XqA
18 12 necomd KHLXBPAMXNP˙XqAqPq˙XPq
19 simp1rr KHLXBPAMXNP˙XqAqPq˙XP˙X
20 simp3r KHLXBPAMXNP˙XqAqPq˙Xq˙X
21 1 2 3 4 5 6 lneq2at KHLXBMXNPAqAPqP˙Xq˙XX=P˙q
22 13 14 15 16 17 18 19 20 21 syl332anc KHLXBPAMXNP˙XqAqPq˙XX=P˙q
23 12 22 jca KHLXBPAMXNP˙XqAqPq˙XqPX=P˙q
24 23 3exp KHLXBPAMXNP˙XqAqPq˙XqPX=P˙q
25 24 reximdvai KHLXBPAMXNP˙XqAqPq˙XqAqPX=P˙q
26 11 25 mpd KHLXBPAMXNP˙XqAqPX=P˙q