Metamath Proof Explorer


Theorem lnatexN

Description: There is an atom in a line different from any other. (Contributed by NM, 30-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lnatex.b B=BaseK
lnatex.l ˙=K
lnatex.a A=AtomsK
lnatex.n N=LinesK
lnatex.m M=pmapK
Assertion lnatexN KHLXBMXNqAqPq˙X

Proof

Step Hyp Ref Expression
1 lnatex.b B=BaseK
2 lnatex.l ˙=K
3 lnatex.a A=AtomsK
4 lnatex.n N=LinesK
5 lnatex.m M=pmapK
6 eqid joinK=joinK
7 1 6 3 4 5 isline3 KHLXBMXNrAsArsX=rjoinKs
8 7 biimp3a KHLXBMXNrAsArsX=rjoinKs
9 simpl2r KHLXBMXNrAsArsX=rjoinKsr=PsA
10 simpl3l KHLXBMXNrAsArsX=rjoinKsr=Prs
11 10 necomd KHLXBMXNrAsArsX=rjoinKsr=Psr
12 simpr KHLXBMXNrAsArsX=rjoinKsr=Pr=P
13 11 12 neeqtrd KHLXBMXNrAsArsX=rjoinKsr=PsP
14 simpl11 KHLXBMXNrAsArsX=rjoinKsr=PKHL
15 simpl2l KHLXBMXNrAsArsX=rjoinKsr=PrA
16 2 6 3 hlatlej2 KHLrAsAs˙rjoinKs
17 14 15 9 16 syl3anc KHLXBMXNrAsArsX=rjoinKsr=Ps˙rjoinKs
18 simpl3r KHLXBMXNrAsArsX=rjoinKsr=PX=rjoinKs
19 17 18 breqtrrd KHLXBMXNrAsArsX=rjoinKsr=Ps˙X
20 neeq1 q=sqPsP
21 breq1 q=sq˙Xs˙X
22 20 21 anbi12d q=sqPq˙XsPs˙X
23 22 rspcev sAsPs˙XqAqPq˙X
24 9 13 19 23 syl12anc KHLXBMXNrAsArsX=rjoinKsr=PqAqPq˙X
25 simpl2l KHLXBMXNrAsArsX=rjoinKsrPrA
26 simpr KHLXBMXNrAsArsX=rjoinKsrPrP
27 simpl11 KHLXBMXNrAsArsX=rjoinKsrPKHL
28 simpl2r KHLXBMXNrAsArsX=rjoinKsrPsA
29 2 6 3 hlatlej1 KHLrAsAr˙rjoinKs
30 27 25 28 29 syl3anc KHLXBMXNrAsArsX=rjoinKsrPr˙rjoinKs
31 simpl3r KHLXBMXNrAsArsX=rjoinKsrPX=rjoinKs
32 30 31 breqtrrd KHLXBMXNrAsArsX=rjoinKsrPr˙X
33 neeq1 q=rqPrP
34 breq1 q=rq˙Xr˙X
35 33 34 anbi12d q=rqPq˙XrPr˙X
36 35 rspcev rArPr˙XqAqPq˙X
37 25 26 32 36 syl12anc KHLXBMXNrAsArsX=rjoinKsrPqAqPq˙X
38 24 37 pm2.61dane KHLXBMXNrAsArsX=rjoinKsqAqPq˙X
39 38 3exp KHLXBMXNrAsArsX=rjoinKsqAqPq˙X
40 39 rexlimdvv KHLXBMXNrAsArsX=rjoinKsqAqPq˙X
41 8 40 mpd KHLXBMXNqAqPq˙X