| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lnatex.b |
|- B = ( Base ` K ) |
| 2 |
|
lnatex.l |
|- .<_ = ( le ` K ) |
| 3 |
|
lnatex.a |
|- A = ( Atoms ` K ) |
| 4 |
|
lnatex.n |
|- N = ( Lines ` K ) |
| 5 |
|
lnatex.m |
|- M = ( pmap ` K ) |
| 6 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
| 7 |
1 6 3 4 5
|
isline3 |
|- ( ( K e. HL /\ X e. B ) -> ( ( M ` X ) e. N <-> E. r e. A E. s e. A ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) ) |
| 8 |
7
|
biimp3a |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> E. r e. A E. s e. A ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) |
| 9 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s e. A ) |
| 10 |
|
simpl3l |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> r =/= s ) |
| 11 |
10
|
necomd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s =/= r ) |
| 12 |
|
simpr |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> r = P ) |
| 13 |
11 12
|
neeqtrd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s =/= P ) |
| 14 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> K e. HL ) |
| 15 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> r e. A ) |
| 16 |
2 6 3
|
hlatlej2 |
|- ( ( K e. HL /\ r e. A /\ s e. A ) -> s .<_ ( r ( join ` K ) s ) ) |
| 17 |
14 15 9 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s .<_ ( r ( join ` K ) s ) ) |
| 18 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> X = ( r ( join ` K ) s ) ) |
| 19 |
17 18
|
breqtrrd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> s .<_ X ) |
| 20 |
|
neeq1 |
|- ( q = s -> ( q =/= P <-> s =/= P ) ) |
| 21 |
|
breq1 |
|- ( q = s -> ( q .<_ X <-> s .<_ X ) ) |
| 22 |
20 21
|
anbi12d |
|- ( q = s -> ( ( q =/= P /\ q .<_ X ) <-> ( s =/= P /\ s .<_ X ) ) ) |
| 23 |
22
|
rspcev |
|- ( ( s e. A /\ ( s =/= P /\ s .<_ X ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
| 24 |
9 13 19 23
|
syl12anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r = P ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
| 25 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r e. A ) |
| 26 |
|
simpr |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r =/= P ) |
| 27 |
|
simpl11 |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> K e. HL ) |
| 28 |
|
simpl2r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> s e. A ) |
| 29 |
2 6 3
|
hlatlej1 |
|- ( ( K e. HL /\ r e. A /\ s e. A ) -> r .<_ ( r ( join ` K ) s ) ) |
| 30 |
27 25 28 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r .<_ ( r ( join ` K ) s ) ) |
| 31 |
|
simpl3r |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> X = ( r ( join ` K ) s ) ) |
| 32 |
30 31
|
breqtrrd |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> r .<_ X ) |
| 33 |
|
neeq1 |
|- ( q = r -> ( q =/= P <-> r =/= P ) ) |
| 34 |
|
breq1 |
|- ( q = r -> ( q .<_ X <-> r .<_ X ) ) |
| 35 |
33 34
|
anbi12d |
|- ( q = r -> ( ( q =/= P /\ q .<_ X ) <-> ( r =/= P /\ r .<_ X ) ) ) |
| 36 |
35
|
rspcev |
|- ( ( r e. A /\ ( r =/= P /\ r .<_ X ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
| 37 |
25 26 32 36
|
syl12anc |
|- ( ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) /\ r =/= P ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
| 38 |
24 37
|
pm2.61dane |
|- ( ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) /\ ( r e. A /\ s e. A ) /\ ( r =/= s /\ X = ( r ( join ` K ) s ) ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |
| 39 |
38
|
3exp |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> ( ( r e. A /\ s e. A ) -> ( ( r =/= s /\ X = ( r ( join ` K ) s ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) ) ) |
| 40 |
39
|
rexlimdvv |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> ( E. r e. A E. s e. A ( r =/= s /\ X = ( r ( join ` K ) s ) ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) ) |
| 41 |
8 40
|
mpd |
|- ( ( K e. HL /\ X e. B /\ ( M ` X ) e. N ) -> E. q e. A ( q =/= P /\ q .<_ X ) ) |