Metamath Proof Explorer


Theorem lnophdi

Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006) (New usage is discouraged.)

Ref Expression
Hypotheses lnopco.1 SLinOp
lnopco.2 TLinOp
Assertion lnophdi S-opTLinOp

Proof

Step Hyp Ref Expression
1 lnopco.1 SLinOp
2 lnopco.2 TLinOp
3 1 lnopfi S:
4 2 lnopfi T:
5 3 4 honegsubi S+op-1·opT=S-opT
6 neg1cn 1
7 2 lnopmi 1-1·opTLinOp
8 6 7 ax-mp -1·opTLinOp
9 1 8 lnophsi S+op-1·opTLinOp
10 5 9 eqeltrri S-opTLinOp