Metamath Proof Explorer


Theorem lnopmi

Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)

Ref Expression
Hypothesis lnopm.1 TLinOp
Assertion lnopmi AA·opTLinOp

Proof

Step Hyp Ref Expression
1 lnopm.1 TLinOp
2 1 lnopfi T:
3 homulcl AT:A·opT:
4 2 3 mpan2 AA·opT:
5 hvmulcl xyxy
6 hvaddcl xyzxy+z
7 5 6 sylan xyzxy+z
8 homval AT:xy+zA·opTxy+z=ATxy+z
9 2 8 mp3an2 Axy+zA·opTxy+z=ATxy+z
10 7 9 sylan2 AxyzA·opTxy+z=ATxy+z
11 id AA
12 2 ffvelcdmi yTy
13 hvmulcl xTyxTy
14 12 13 sylan2 xyxTy
15 2 ffvelcdmi zTz
16 ax-hvdistr1 AxTyTzAxTy+Tz=AxTy+ATz
17 11 14 15 16 syl3an AxyzAxTy+Tz=AxTy+ATz
18 17 3expb AxyzAxTy+Tz=AxTy+ATz
19 1 lnopli xyzTxy+z=xTy+Tz
20 19 3expa xyzTxy+z=xTy+Tz
21 20 oveq2d xyzATxy+z=AxTy+Tz
22 21 adantl AxyzATxy+z=AxTy+Tz
23 homval AT:yA·opTy=ATy
24 2 23 mp3an2 AyA·opTy=ATy
25 24 adantrl AxyA·opTy=ATy
26 25 oveq2d AxyxA·opTy=xATy
27 hvmulcom AxTyAxTy=xATy
28 12 27 syl3an3 AxyAxTy=xATy
29 28 3expb AxyAxTy=xATy
30 26 29 eqtr4d AxyxA·opTy=AxTy
31 homval AT:zA·opTz=ATz
32 2 31 mp3an2 AzA·opTz=ATz
33 30 32 oveqan12d AxyAzxA·opTy+A·opTz=AxTy+ATz
34 33 anandis AxyzxA·opTy+A·opTz=AxTy+ATz
35 18 22 34 3eqtr4rd AxyzxA·opTy+A·opTz=ATxy+z
36 10 35 eqtr4d AxyzA·opTxy+z=xA·opTy+A·opTz
37 36 exp32 AxyzA·opTxy+z=xA·opTy+A·opTz
38 37 ralrimdv AxyzA·opTxy+z=xA·opTy+A·opTz
39 38 ralrimivv AxyzA·opTxy+z=xA·opTy+A·opTz
40 ellnop A·opTLinOpA·opT:xyzA·opTxy+z=xA·opTy+A·opTz
41 4 39 40 sylanbrc AA·opTLinOp