Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lnopm.1 | |
|
Assertion | lnopmi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopm.1 | |
|
2 | 1 | lnopfi | |
3 | homulcl | |
|
4 | 2 3 | mpan2 | |
5 | hvmulcl | |
|
6 | hvaddcl | |
|
7 | 5 6 | sylan | |
8 | homval | |
|
9 | 2 8 | mp3an2 | |
10 | 7 9 | sylan2 | |
11 | id | |
|
12 | 2 | ffvelcdmi | |
13 | hvmulcl | |
|
14 | 12 13 | sylan2 | |
15 | 2 | ffvelcdmi | |
16 | ax-hvdistr1 | |
|
17 | 11 14 15 16 | syl3an | |
18 | 17 | 3expb | |
19 | 1 | lnopli | |
20 | 19 | 3expa | |
21 | 20 | oveq2d | |
22 | 21 | adantl | |
23 | homval | |
|
24 | 2 23 | mp3an2 | |
25 | 24 | adantrl | |
26 | 25 | oveq2d | |
27 | hvmulcom | |
|
28 | 12 27 | syl3an3 | |
29 | 28 | 3expb | |
30 | 26 29 | eqtr4d | |
31 | homval | |
|
32 | 2 31 | mp3an2 | |
33 | 30 32 | oveqan12d | |
34 | 33 | anandis | |
35 | 18 22 34 | 3eqtr4rd | |
36 | 10 35 | eqtr4d | |
37 | 36 | exp32 | |
38 | 37 | ralrimdv | |
39 | 38 | ralrimivv | |
40 | ellnop | |
|
41 | 4 39 40 | sylanbrc | |