Metamath Proof Explorer


Theorem lo1sub

Description: The difference of an eventually upper bounded function and an eventually bounded function is eventually upper bounded. The "correct" sharp result here takes the second function to be eventually lower bounded instead of just bounded, but our notation for this is simply ( x e. A |-> -u C ) e. <_O(1) , so it is just a special case of lo1add . (Contributed by Mario Carneiro, 31-May-2016)

Ref Expression
Hypotheses lo1sub.1 φxABV
lo1sub.2 φxAC
lo1sub.3 φxAB𝑂1
lo1sub.4 φxAC𝑂1
Assertion lo1sub φxABC𝑂1

Proof

Step Hyp Ref Expression
1 lo1sub.1 φxABV
2 lo1sub.2 φxAC
3 lo1sub.3 φxAB𝑂1
4 lo1sub.4 φxAC𝑂1
5 1 3 lo1mptrcl φxAB
6 5 recnd φxAB
7 2 recnd φxAC
8 6 7 negsubd φxAB+C=BC
9 8 mpteq2dva φxAB+C=xABC
10 2 renegcld φxAC
11 2 o1lo1 φxAC𝑂1xAC𝑂1xAC𝑂1
12 4 11 mpbid φxAC𝑂1xAC𝑂1
13 12 simprd φxAC𝑂1
14 5 10 3 13 lo1add φxAB+C𝑂1
15 9 14 eqeltrrd φxABC𝑂1