Metamath Proof Explorer


Theorem lplnnlt

Description: Two lattice planes cannot satisfy the less than relation. (Contributed by NM, 7-Jul-2012)

Ref Expression
Hypotheses lplnnlt.s <˙=<K
lplnnlt.p P=LPlanesK
Assertion lplnnlt KHLXPYP¬X<˙Y

Proof

Step Hyp Ref Expression
1 lplnnlt.s <˙=<K
2 lplnnlt.p P=LPlanesK
3 1 pltirr KHLXP¬X<˙X
4 3 3adant3 KHLXPYP¬X<˙X
5 breq2 X=YX<˙XX<˙Y
6 5 notbid X=Y¬X<˙X¬X<˙Y
7 4 6 syl5ibcom KHLXPYPX=Y¬X<˙Y
8 eqid K=K
9 8 1 pltle KHLXPYPX<˙YXKY
10 8 2 lplncmp KHLXPYPXKYX=Y
11 9 10 sylibd KHLXPYPX<˙YX=Y
12 11 necon3ad KHLXPYPXY¬X<˙Y
13 7 12 pm2.61dne KHLXPYP¬X<˙Y