Metamath Proof Explorer


Theorem lplnribN

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses islpln2a.l ˙=K
islpln2a.j ˙=joinK
islpln2a.a A=AtomsK
islpln2a.p P=LPlanesK
islpln2a.y Y=Q˙R˙S
Assertion lplnribN KHLQARASAYP¬R˙Q˙S

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙=K
2 islpln2a.j ˙=joinK
3 islpln2a.a A=AtomsK
4 islpln2a.p P=LPlanesK
5 islpln2a.y Y=Q˙R˙S
6 1 2 3 3noncolr1N KHLQARASAQR¬S˙Q˙RSQ¬R˙S˙Q
7 6 simprd KHLQARASAQR¬S˙Q˙R¬R˙S˙Q
8 7 3expia KHLQARASAQR¬S˙Q˙R¬R˙S˙Q
9 1 2 3 4 5 islpln2ah KHLQARASAYPQR¬S˙Q˙R
10 2 3 hlatjcom KHLQASAQ˙S=S˙Q
11 10 3adant3r2 KHLQARASAQ˙S=S˙Q
12 11 breq2d KHLQARASAR˙Q˙SR˙S˙Q
13 12 notbid KHLQARASA¬R˙Q˙S¬R˙S˙Q
14 8 9 13 3imtr4d KHLQARASAYP¬R˙Q˙S
15 14 3impia KHLQARASAYP¬R˙Q˙S