Metamath Proof Explorer


Theorem lshpkrex

Description: There exists a functional whose kernel equals a given hyperplane. Part of Th. 1.27 of Barbu and Precupanu,Convexity and Optimization in Banach Spaces. (Contributed by NM, 17-Jul-2014)

Ref Expression
Hypotheses lshpkrex.h H = LSHyp W
lshpkrex.f F = LFnl W
lshpkrex.k K = LKer W
Assertion lshpkrex W LVec U H g F K g = U

Proof

Step Hyp Ref Expression
1 lshpkrex.h H = LSHyp W
2 lshpkrex.f F = LFnl W
3 lshpkrex.k K = LKer W
4 eqid Base W = Base W
5 eqid LSpan W = LSpan W
6 eqid LSubSp W = LSubSp W
7 eqid LSSum W = LSSum W
8 lveclmod W LVec W LMod
9 4 5 6 7 1 8 islshpsm W LVec U H U LSubSp W U Base W z Base W U LSSum W LSpan W z = Base W
10 simp3 U LSubSp W U Base W z Base W U LSSum W LSpan W z = Base W z Base W U LSSum W LSpan W z = Base W
11 9 10 syl6bi W LVec U H z Base W U LSSum W LSpan W z = Base W
12 11 imp W LVec U H z Base W U LSSum W LSpan W z = Base W
13 eqid + W = + W
14 simp1l W LVec U H z Base W U LSSum W LSpan W z = Base W W LVec
15 simp1r W LVec U H z Base W U LSSum W LSpan W z = Base W U H
16 simp2 W LVec U H z Base W U LSSum W LSpan W z = Base W z Base W
17 simp3 W LVec U H z Base W U LSSum W LSpan W z = Base W U LSSum W LSpan W z = Base W
18 eqid Scalar W = Scalar W
19 eqid Base Scalar W = Base Scalar W
20 eqid W = W
21 eqid x Base W ι k Base Scalar W | y U x = y + W k W z = x Base W ι k Base Scalar W | y U x = y + W k W z
22 4 13 5 7 1 14 15 16 17 18 19 20 21 2 lshpkrcl W LVec U H z Base W U LSSum W LSpan W z = Base W x Base W ι k Base Scalar W | y U x = y + W k W z F
23 4 13 5 7 1 14 15 16 17 18 19 20 21 3 lshpkr W LVec U H z Base W U LSSum W LSpan W z = Base W K x Base W ι k Base Scalar W | y U x = y + W k W z = U
24 fveqeq2 g = x Base W ι k Base Scalar W | y U x = y + W k W z K g = U K x Base W ι k Base Scalar W | y U x = y + W k W z = U
25 24 rspcev x Base W ι k Base Scalar W | y U x = y + W k W z F K x Base W ι k Base Scalar W | y U x = y + W k W z = U g F K g = U
26 22 23 25 syl2anc W LVec U H z Base W U LSSum W LSpan W z = Base W g F K g = U
27 26 rexlimdv3a W LVec U H z Base W U LSSum W LSpan W z = Base W g F K g = U
28 12 27 mpd W LVec U H g F K g = U